«шина»
Содержание:
- «Звезда»
- С
- Виды
- Топология локальной сети
- Вид топологии ЛВС «ячеистая»
- Логические топологии
- Децентрализация
- Для чего нужна нулевая шина
- К
- Виды
- Виды ЛВС
- Широкие шины меньше перегреваются и изнашиваются
- Что необходимо для создания локальной сети?
- Концепции
- Топология и ее многозначительность
- Топологии компьютерных сетей
«Звезда»
Топология компьютерных сетей «звезда» – структура, центром которой служит коммутирующее устройство. Все компьютеры подсоединены к нему отдельными линиями.
Коммутирующим устройством может быть концентратор, то есть HUB, или коммутатор. Такую топологию еще именуют «пассивной звездой». Если коммутирующим устройством выступает другой компьютер или сервер, то топология может называться «активной звездой». Именно на коммутирующее устройство поступает сигнал от каждого компьютера, обрабатывается и отправляется к другим подключенным компьютерам.
У данной топологии есть ряд достоинств. Несомненным преимуществом является то, что компьютеры не зависят друг от друга. При поломке одного из них сама сеть остается в рабочем состоянии. Также к такой сети легко можно подключить и новый компьютер. При подключении нового оборудования остальные элементы сети продолжат работать в обычном режиме. В таком виде топологии сети легко находить неисправности. Пожалуй, одно из главных достоинств «звезды» – это ее высокая производительность.
Однако при всех достоинствах имеются у такого типа компьютерных сетей и недостатки. Если выйдет из строя центральное коммутирующее устройство, то перестанет работать и вся сеть. В ней есть ограничения по подключаемым рабочим станциям. Их не может быть больше имеющегося количества портов на коммутирующем устройстве. И последний недостаток сети – ее стоимость. Требуется достаточно большое количество кабеля, чтобы подключить каждый компьютер.
С
- Связное двоеточие
- Топологическое пространство из двух точек, только одно из одноточечных множеств в котором открыто.
- Связное пространство
- Пространство, которое невозможно разбить на два непустых непересекающихся множества.
- Сепарабельное пространство
- Топологическое пространство, в котором имеется счётное .
- Сетевой вес топологического пространства
- Минимум мощностей всех пространства .
- Сеть
- Сеть топологического пространства X{\displaystyle X} — семейство N{\displaystyle N} подмножеств пространства X{\displaystyle X}, такое, что для любой точки x{\displaystyle x} и любой её U{\displaystyle U}, существует V∈N{\displaystyle V\in N}, такое, что x∈V⊂U{\displaystyle x\in V\subset U}.
- Слипшееся двоеточие
- топологическое пространство из двух точек.
- Спред топологического пространства
- Супремум мощностей всех подпространств.
- Стягиваемое пространство
- Пространство, точке.
- Сумма топологических пространств
- Суммой семейства топологических пространств {As}s∈S{\displaystyle \{A_{s}\}_{s\in S}} называется дизъюнктное объединение ∐s∈SAs{\displaystyle \coprod _{s\in S}A_{s}} этих топологических пространств как множеств с , состоящей из всех множеств вида ∐s∈SUs{\displaystyle \coprod _{s\in S}U_{s}}, где каждое Us{\displaystyle U_{s}} открыто в As{\displaystyle A_{s}}. Обозначается ⨁s∈SAs{\displaystyle \bigoplus _{s\in S}A_{s}}.
Виды
Выдуман миллион принципов поделить иерархические структуры цифровых мощностей. Ниже вводится ещё и понятие топологии, позволяющее продолжить ряд. Отсутствует резон приводить полный список неудобоваримых классификацией, утомляющих бессмысленностью читателя. Бытует практика различать следующие виды сетей:
- Глобальные (всемирные).
- Локальные.
- Муниципальные (городские, областные).
Реально встречаются комбинированные варианты. Считаем общепринятую классификацию устаревшей, потерявшей физический смысл. Следует разделять 2 категории:
- ресурсы, наделённые доменными именами, составляющие интернет;
- прочие структурные формирования.
Рассмотрим ниже понятие доменного имени, пользуясь концепцией глобальных сетей.
Протяжённость
- Нательная составлена имплантами и носимыми гаджетами.
- Персональная объединяет устройства одного владельца.
- Локальная ограничена пределами офиса, завода. Эксперты единогласно называют пределом протяжённости 10 км.
- Кампусная охватывает несколько близлежащих зданий.
- Городская связывает абонентов населённого пункта.
- Глобальная помогает общаться населению планеты.
Архитектура
- Серверная. Клиенты пользуются услугами центрального ресурса, заведующего правами.
- Однораноговая. Типичным примером назовём пользователей торрент-клиентов.
- Звезда.
- Кольцо.
- Шина.
- Ячейки.
- Решётка.
- Двойное кольцо.
- Дерево.
- Жирное дерево.
- Гибрид.
- Windows.
- Cisco.
- UNIX.
- NetWare.
Топология локальной сети
Первое к чему нужно приступать при изучении основ функционирования компьютерных сетей, это топология (структура) локальной сети. Существует три основных вида топологии: шина, кольцо и звезда.
Линейная шина
Все компьютеры подключены к единому кабелю с заглушками по краям (терминаторами). Заглушки необходимы для предотвращения отражения сигнала. Принцип работы шины заключается в следующем: один из компьютеров посылает сигнал всем участникам локальной сети, а другие анализируют сигнал и если он предназначен им, то обрабатывают его. При таком взаимодействии, каждый из компьютеров проверяет наличие сигнала в шине перед отправкой данных, что исключает возникновения коллизий. Минус данной топологии — низкая производительность, к тому же, при повреждении шины нарушается нормальное функционирование локальной сети и часть компьютеров не в состоянии обрабатывать либо посылать сигналы.
Кольцо
В данной топологии каждый из компьютеров соединен только с двумя участниками сети. Принцип функционирования такой ЛВС заключается в том, что один из компьютеров принимает информацию от предыдущего и отправляет её следующему выступая в роли повторителя сигнала, либо обрабатывает данные если они предназначались ему. Локальная сеть, построенная по кольцевому принципу более производительна в сравнении с линейной шиной и может объединять до 1000 компьютеров, но, если где-то возникает обрыв сеть полностью перестает функционировать.
Звезда
Топология звезда, является оптимальной структурой для построения ЛВС. Принцип работы такой сети заключается во взаимодействии нескольких компьютеров между собой по средствам центрального коммутирующего устройства (коммутатор или свитч). Топология звезда позволяет создавать высоконагруженные масштабируемые сети, в которых центральное устройство может выступать, как отдельная единица в составе многоуровневой ЛВС. Единственный минус в том, что при выходе из строя центрального коммутирующего устройства рушится вся сеть или её часть. Плюсом является то, что, если один из компьютеров перестаёт функционировать это никак не сказывается на работоспособности всей локальной сети.
Вид топологии ЛВС «ячеистая»
Данная топология по своей конструкции очень сильно напоминает «сеточную» топологию. С той лишь разницей, что «ячеистая» подразумевает создание внутри сети «ячеек», соединенных по «сеточному» принципу, однако среди этих ячеек выделяются «главные» устройства, через которые идет соединение с такими же «главными» устройствами других ячеек.
Фактически это приводит к тому, что все ячейки в сети будут связаны между собой и будут образовывать целую сетку из ячеек. При этом каждый «простой» компьютер из одной ячейки может «общаться» с любым компьютером из другой ячейки, но делать они это будут через «главные» компьютеры.
Логические топологии
Топология логической сети описывает способы взаимодействия хостов с использованием устройств физической топологии — определение оптимального функционирования линии, политика безопасности и управления сетью, расширение и адаптация к меняющимся потребностям.
Бывают такие виды топологий сетей:
- Точка-точка. При выборе топологии этого типа данные передаются только от одного устройства к другому. Эти приборы могут быть соединены между собой непосредственно, например, компьютер с переключателем, а также косвенно, на большие расстояния, с использованием промежуточных устройств. Например, это может быть соединение двух маршрутизаторов, удалённых друг от друга на много километров.
- Прохождения токена. Данные передаются не смешанным образом, а последовательно для устройств, подключённых в сеть. Прибор, который получает порцию данных, анализирует, направлены ли они к нему или нет. Если данные не адресованы ему, он передаёт их на соседнее устройство. Таким образом, данные передаются на всё приборы, выступающие между источником и назначением.
- Многопользовательская. Иногда она называется логической иерархической топологией широковещания и позволяет устройствам взаимодействовать в линии через одну физическую передающую среду. Наиболее часто она использовалась совместно с физической топологией шины и звезды на ранней стадии её развития, когда в качестве точек доступа к сети использовались концентраторы.
- Мультитенантная. Каждое устройство в этой топологии видит данные, передаваемые через сеть, так как они передаются на все устройства, но только конкретный прибор, для которого адресованы данные. В связи с тем, что компоненты в сети используют информацию из общей среды, необходимо введение механизмов, контролирующих доступ к этой среде.
Децентрализация
В частично связанной топологии ячеистой сети есть по крайней мере два узла с двумя или более путями между ними, чтобы обеспечить избыточные пути в случае отказа канала, обеспечивающего один из путей. Децентрализация часто используется для компенсации недостатка единой точки отказа, который присутствует при использовании одного устройства в качестве центрального узла (например, в сетях типа «звезда» и «дерево»). Особый вид меша, ограничивающий количество переходов между двумя узлами, — это гиперкуб . Количество произвольных вилок в ячеистых сетях затрудняет их проектирование и реализацию, но их децентрализованный характер делает их очень полезными.
В некоторой степени это похоже на грид-сеть , где линейная или кольцевая топология используется для соединения систем в нескольких направлениях. Например, многомерное кольцо имеет тороидальную топологию.
Полностью подключенная сеть , полная топология , или полная ячеистая топология представляет собой топологию сети , в которой существует прямая связь между всеми парами узлов. В полностью связанной сети с n узлами есть прямые ссылки. Сети, спроектированные с такой топологией, обычно очень дороги в настройке, но обеспечивают высокую степень надежности из-за множественных путей для данных, которые обеспечиваются большим количеством избыточных каналов между узлами. Эта топология чаще всего встречается в военных приложениях.
п(п-1)2{\ Displaystyle {\ гидроразрыва {п (п-1)} {2}} \,}
Для чего нужна нулевая шина
Силовой и нулевой провода, необходимо распределить от щитка до каждого индивидуального потребителя (или группы потребителей). Типовая схема квартирного щитка выглядит так:
Все силовые провода коммутируются защитными автоматами. А рабочий нуль соединяется с каждым потребителем напрямую. Для того чтобы выполнить групповое соединение без проблем на единственном контакте, разработана нулевая шина.
- Обеспечивается оперативное подключение нескольких равнозначных линий.
- Все контакты находятся под визуальным контролем.
- Появляется возможность эффективного использования автоматов: нулевой проводник размыкать автоматом не обязательно. Значит, коммутационное оборудование может состоять из одной линии.
- Гарантируется неразрывная цепь нуля от силового кабеля на входе, до каждой электроустановки.
- Грамотное разделение электропроводки в рамках одной системы.
- Технически правильное подключение устройств защитного отключения (УЗО), возможно лишь в случае организации нулевой шины в соответствии с ПУЭ.
К
- Кардинальный инвариант
- , выражающийся кардинальным числом.
- Категория Бэра
- Характеристика топологического пространства, принимающая одно из двух значений; к первой категории Бэра относятся пространства, допускающие счётное подмножествами, прочие пространства относятся ко второй категории Бэра.
- Компактификация
- Компактификация пространства X{\displaystyle X} — это пара (Y,f){\displaystyle (Y,f)}, где Y{\displaystyle Y} — компактное пространство, f{\displaystyle f} — гомеоморфное вложение пространства X{\displaystyle X} в пространство Y{\displaystyle Y}, причём f(X){\displaystyle f(X)} всюду плотно в Y{\displaystyle Y} Также компактификацией называют само пространство Y{\displaystyle Y}.
- Компактное отображение
- Отображение топологических пространств, прообраз каждой точки при котором компактен.
- Компактное пространство
- Топологическое пространство, в любом которого открытыми множествами найдётся конечное подпокрытие.
- Компонента связности точки
- Максимальное множество, содержащее эту точку.
- Континуум
- топологическое пространство.
- Конус над топологическим пространством
- Для пространства X{\displaystyle X} (называемым основанием конуса) — пространство CX{\displaystyle \mathrm {C} X}, получающееся из произведения X×,1{\displaystyle X\times } подпространства X×{}{\displaystyle X\times \{0\}} в одну точку, называемую вершиной конуса.
Виды
Грубо говоря, есть две сети: полностью подключенные и не полностью подключенные.
Полностью подключенная локальная сеть — когда каждое устройство подключено к каждому. Проблема с таким подключением в том, что один и тот же компьютер имеет большое количество портов для связи со всеми компьютерами. Применяется очень редко. Также существует проблема при масштабировании такой системы.
Поскольку полносвязные там где используются очень редко, мы поговорим о не полностью подключенных и их разновидностях.
Шина
Один из самых дешевых способов связи. Есть кабель, соединяющий другие компьютеры. Коаксиальный кабель — самый распространенный. На концах кабеля устанавливаются терминаторы, устраняющие помехи и искажения сигнала.
- Быстрое подключение новых устройств
- Экономично, потому что нужен всего один кабель.
- Равенство в сети, хотя это можно отнести к недостаткам.
- Проблема с поиском неисправности.
- Низкая производительность сети из-за одного канала.
- Кабель всего один, и у него есть ограничение на передачу данных. То есть при большом количестве устройств и активном использовании пакеты могут быть потеряны.
Кольцо
Каждый узел имеет два соединения, входной сигнал и выходной сигнал. В результате все компьютеры связаны в своеобразное «кольцо».
- Если узел выходит из строя, сеть продолжает работать.
- Бюджетный.
- Быстрая настройка и подключение.
Почему-то в интернете пишут, что такую топологию можно бесконечно увеличивать, но это не так. В какой-то момент, как в случае с «шиной», трафик может стать настолько большим, что сеть замедлится и пакеты будут потеряны. Так что есть ограничение на количество машин.
Звезда
Есть центральный сервер или маршрутизатор, который контролирует все подключенные к нему компьютеры и устройства. Например, в вашем доме, когда вы используете маршрутизатор, все домашние устройства являются подчиненными, и маршрутизатор управляет ими, поэтому вы также используете топологию «звезда».
- Управление происходит с устройства.
- Контроль и безопасность.
- Если узел выходит из строя, сеть продолжает функционировать. Выявить неисправность также довольно просто.
- При общении по сети конфликтов нет.
- вы можете проверить трафик.
- Если центральный сервер выходит из строя, сеть выходит из строя.
- Высокие затраты.
Другие виды
На самом деле существует множество типов локальных сетей. К ним относятся ячеистая локальная сеть, в которой компьютеры очень похожи на соединение, как в полностью ячеистой сети. Вы также можете столкнуться с «смешанным» видом — когда в сети одновременно используются несколько топологий.
Виды ЛВС
На сегодняшний день топология ЛВС делится на два типа — полносвязная и неполносвязная. К первой относятся такие соединения, в которых любое сетевое устройство имеет непосредственную связь с другими. Является редко применяемым, поскольку вызывает сомнения в эффективности. Кроме этого, она очень громоздкая, так как каждое устройство должно работать в паре с большим количеством портов для коммутации и контакта со всеми другими приборами.
Обратите внимание! Что касается неполносвязной, то в этом случае применяются специализированные узлы для обмена информацией между устройствами не прямо, а косвенно. Таких схем бывает несколько
Обратите внимание! Каждая схема соединения имеет свои положительные и негативные стороны
Их важно учесть при выборе топологии
«Шина»
Представляет собой наиболее дешевый и простой способ подключения. В таком случае применяется всего лишь одна линия в виде коаксиального кабеля. Именно он является источником и проводником в обмене информацией между пользователями. Особенностью этого класса является наличие на каждом конце «шины» терминатора, который убирает возможные искажения передачи.
Положительные качества:
- соединенные приборы имеют одинаковые права;
- неисправность одного устройства никоим образом не влияет на работу других;
- минимальное использование провода;
- простое и доступное масштабирование соединения при работе.
Негативные качества:
- невысокая надежность соединения из-за проблем с разъемами проводов;
- один канал делится на всех пользователей, что снижает производительность;
- проблемы с нахождением поломок в связи с параллельным включением адаптеров;
- возможность использования в сети небольшого количества приборов.
«Звезда»
Данный вид соединения характеризуется наличием сервера, к которому подключаются все сетевые устройства. Доступ к информации и обмен ею происходит только при помощи центрального сервера.
Обратите внимание! Представленная схема более сложная, чем «шина». Для нее характерно применение различного дополнительного оборудования
Минусы:
- при поломке или сбое в сервере соединение полностью или частично теряет работоспособность, то есть нормальное функционирование зависит только от одного компьютера;
- большой расход провода, что повышает затраты.
Плюсы:
- полное отсутствие сетевых конфликтов при схеме с управлением одним компьютером;
- неисправность одного из устройств или повреждение кабеля не влияет на работу;
- максимально упрощенное сетевое оборудование. Это связано с тем, что только один ПК является главным;
- один из наиболее безопасных методов подключения, обладает свойствами простого контроля за сетью и позволяет максимально ограничить доступ «лишних» участников.
«Кольцо»
Соединение происходит за счет контакта одного рабочего узла с другими двумя: один отвечает за прием информации, а по второму осуществляется передача. Получается схема, в которой все устройства соединены в одно кольцо специальными каналами, применяемые для передачи информации. Выход одного узла соединен со входом другого, то есть информация, переданная из одной точки, попадает на начало кольца.
Обратите внимание! Примечательно, что движение данных проходит всегда в одном направлении. Положительные черты:
Положительные черты:
- возможность быстрого создания и настройки подобного рода подключения;
- простое масштабирование. В отличие от «шины», необходимо отключение сети при создании дополнительного узла;
- практически неограниченное количество пользователей;
- минимизация конфликтов в сети и высокая устойчивость;
- при наличии ретрансляции можно увеличивать топологию почти без ограничений.
Негативные качества:
повреждение линии ограничивает работоспособность полной сети.
Ячеистая
Представленный тип является результатом удаления определенных связей из полносвязной топологии локальных сетей. В таком случае имеется возможность создания подключения с большим числом участников. В результате были созданы различные версии и конфигурации распространенных способов подключения, такие как: «решетка», двойное или тройное «кольцо», «дерево», «снежинка», сеть Клоза и др.
Обратите внимание! Представленными конфигурациями ячеистая структура не ограничена, возможны различные другие вариации сетевых соединений, многие из которых даже не имеют наименований
Смешанная
Такой тип получается в результате смешения нескольких схем соединений в одну. Она состоит из различных кластеров, которые в свою очередь могут быть стандартными топологиями.
Широкие шины меньше перегреваются и изнашиваются
Одна из причин того, зачем делают широкие шины — чтобы они меньше перегревались и изнашивались. Только и всего, но это очень актуально для спортивных машин. Именно поэтому на спорткарах и машинах для дрэг-рейсинга устанавливают широченные «катки». Но не только поэтому, есть еще одна причина — уменьшение увода шины, и о ней я расскажу в следующих статьях.
И конечно, большая ширина шины и большая устойчивость к перегреву позволяет дольше сохранять первоначальное сцепление с дорогой. К примеру, берем два комплекта шин одинакового состава разной ширины: 4 узеньких и 4 широких. О обоих коэффициент сцепления с асфальтом одинаков и равен, допустим, 0,8. Ставим их по очереди на одну и ту же спортивную машину с одним и тем же пилотом и выпускаем на гоночную трассу, засекаем время прохождения круга. Через какое-то количество кругов шины будут изнашиваться, и к концу, допустим, 20-го круга, у узкой износ будет заметно большим и сцепление снизится, скажем, до 0,6. А у широкой — только до 0,7. И, естесственно, поэтому (по разным причинам, но поэтому тоже) на широких шинах пилот проедет заезд быстрее, чем на узкой. Но не потому, что у широкой шины, якобы, изначально выше сцепление с дорогой, как многие считают. Типа, если взяли узкую шину с коэффициентом сцепления 0,8, то у такой же в полтора раза более широкой будет сразу 1,2. Ну да, а если поставить на одну ось рядом пять узких шин, то что будем иметь коэффициент сцепления 4,0 что ли???
Кстати, обратите внимание, что на раллийных машинах для езды по грунту или снегу стоят шины узкие, в отличие от асфальтовых споркаров. Значит, в каких-то ситуациях широкие шины даже проигрывают узким, логично ведь? И если бы ширина шины прямо влияла на силу сцепления с дорогой, было бы все просто и однозначно: везде бы стояли широкие-преширокие шины, и летом, и зимой, и на городских, и на гоночных машинах
Отпускаем газ — увеличиваем сцепление передних шин
Небольшое отступление. Меня однажды «порадовал» ответом на вопрос инструктор одной из московских школ вождения. Я проходил курсы водительского мастерства, мы делали змейку, и нас учили бросать газ на каждом входе в поворот, у каждого конуса. Когда я спросил «а зачем?», в ответ услышал следующее: «Бросая газ, мы увеличиваем пятно контакта передних шин с дорогой, тем самым улучшаем их сцепление, а значит и скорость прохождения поворота. Об этом говорит элементарная физика». Спорить я, конечно, не стал, но… Слышим звон, не знаем, где он…
В чем фишка. Про сброс газа перед поворотом, а точнее, про бессмысленность этого уже много написал уважаемый мною Михаил Горбачев (www.drive-class.ru), так что оставим это в стороне. Тем не менее, сцепление передних шин действительно улучшается на те самые доли секунды, пока сброшен газ. Но почему? Мы же договорились, что пятно контакта не влияет на сцепление?! Да, не влияет, но здесь дело в другом. Вспомним закон Кулона. Сила сцепления (трения покоя) равна:
Где N – вес. И кстати, не путаем вес с массой! Масса – это масса (в килограммах), а вес – сила, с которой тело давит на опору (в ньютонах). Далее, m – масса машины, g – ускорение свободного падения.
Отпуская газ, мы перераспределяем вес с зада машина на передок, увеличиваем вес, приходящийся на переднюю ось, и тем самым сцепление передних шин. Понятно, что под дополнительным весом передние шины дополнительно расплющиваются, и площадь пятен их контакта с дорогой увеличивается. Но это лишь следствие увеличенния нагрузки на шины, и никак не причина увеличения их сцепления! Пятно контакта, как обычно, тут совсем ни при чем.
Почему отпускать «газ» в повороте опасно?
Добавлю про опасность отпускания педали газа на повороте. Делая это, мы нагружаем переднюю ось машины и одновременно разгружаем заднюю. А руководствуясь вышенаписанными соображениями приходим к выводу, что сцепление задних шин с дорогой в этот момент ухудшается, и появляется риск заноса автомобиля. Кстати, отпускание педали газа на входе в поворот — один из основных приемов гонищков на ралли, которым они пускают машину в управляемый занос. Не верите? Приходите на курс контраварийного вождения «Зимняя контраварийная подготовка» и сами попробуете
Что необходимо для создания локальной сети?
Для создания несложной локальной сети у себя дома или в офисе нужно совсем не много:
- WiFi роутер
- компьютер с сетевой картой Ethernet (LAN/WAN)
- ноутбуки, смартфоны, ТВ приставки и другие девайсы с беспроводным адаптером
После этого необходимо произвести некоторые настройки на каждом из них, после чего можно пользоваться всеми преимуществами локальной сети — перекидывать файлы между устройствами, транслировать экран с одного на другое, играть по локальной сети, вести видеонаблюдения, создать файловый сервер и так далее. Подробно об этих конфигурациях вы сможете прочитать на нашем сайте.
Не помогло
Концепции
Топологии на множествах
Термин топология также относится к определенной математической идее, имеющей центральное значение в области математики, называемой топологией. Неформально топология сообщает, как элементы набора пространственно соотносятся друг с другом. Один и тот же набор может иметь разные топологии. Например, реальная линия , комплексная плоскость и множество Кантора можно рассматривать как одно и то же множество с разными топологиями.
Формально, пусть X некоторое множество , и пусть τ является семейство подмножеств X . Тогда τ называется топологией на X, если:
- И пустое множество, и X являются элементами τ .
- Любое объединение элементов τ является элементом τ .
- Любое пересечение конечного числа элементов τ является элементом τ .
Если τ — топология на X , то пара ( X , τ ) называется топологическим пространством. Обозначение X τ может использоваться для обозначения множества X, наделенного определенной топологией τ . По определению каждая топология является π -системой .
Члены т называются открытыми множествами в X . Подмножество X называется замкнутым, если его дополнение содержится в τ (то есть его дополнение открыто). Подмножество X может быть открытым, закрытым, обоими ( закрытым набором ) или ни одним из них. Пустое множество и сам X всегда закрыты и открыты. Открытое подмножество X , который содержит точку й называется окрестностью из х .
Непрерывные функции и гомеоморфизмы
Функция или отображение одного топологического пространства в другое называется непрерывной , если прообраз любого открытого множества открыт. Если функция отображает действительные числа в действительные числа (оба пространства со стандартной топологией), то это определение непрерывности эквивалентно определению непрерывности в исчислении . Если непрерывная функция взаимно однозначна и на , и если обратная функция также непрерывна, то функция называется гомеоморфизмом, а область определения функции называется гомеоморфной диапазону. Другими словами, функция имеет естественное расширение топологии. Если два пространства гомеоморфны, они имеют одинаковые топологические свойства и считаются топологически одинаковыми. Куб и сфера гомеоморфны, как чашка кофе и пончик. Но круг не гомеоморфен бублику.
Коллекторы
Хотя топологические пространства могут быть чрезвычайно разнообразными и экзотическими, многие области топологии сосредоточены на более знакомом классе пространств, известных как многообразия. Многообразие является топологическим пространством , которое напоминает евклидово пространство вблизи каждой точки. Точнее, каждая точка n -мерного многообразия имеет окрестность , гомеоморфную евклидову пространству размерности n . Прямые и окружности , но не восьмерки , являются одномерными многообразиями. Двумерные многообразия также называют поверхностями , хотя не все поверхности являются многообразиями. Примеры включают плоскость , сферу и тор, которые могут быть реализованы без самопересечения в трех измерениях, а также бутылку Клейна и реальную проективную плоскость , которые не могут (то есть все их реализации являются поверхностями, которые не являются многообразиями) .
Топология и ее многозначительность
При выборе топологии важно понимать, что речь идет не только о расположении компьютеров и местах прокладки кабеля. Этот термин в литературе упоминается в различных смыслах
Под ним в различных случаях могут понимать следующее:
Расположение составляющих элементов сети.
Могут иметь в виду логическую топологию. В этом случае предметом рассмотрения является характер распространения информационных сигналов, иерархия связей в сети.
В некоторых случаях имеется в виду топология операций обмена данными. Она может быть смешанной — сочетать различные схемы. Здесь речь идет об организации операций захвата управления шиной между различными компьютерами и порядке передачи такого права между различными устройствами в сети
Оно может, например, передаваться по кругу.
При рассмотрении информационной топологии важное значение имеет организация информационных потоков в сети.
Чтобы пояснить сказанное, можно привести следующий пример. Возможна ситуация, когда физическое подключение устройств происходит на основе применения топологии шины. Таким же образом будет организована логическая топология.
Обратите внимание! Однако информационная может предусматривать, что информационные потоки устроены на основе использования одного компьютера в качестве главного. То есть информация будет передаваться ему, а потом от него нужному компьютеру
Здесь будет применен принцип звезды.
А передача управления от одного элемента другому будет осуществляться по эстафетному принципу. Он состоит в кольцевой передаче такого права между устройствами и соответствует типу подсоединения «кольцо».
При создании локальной сети важно правильно выбрать подходящую топологию. Использование шины в некоторых случаях может быть наиболее подходящим решением
Топологии компьютерных сетей
Топология сети – это усредненная геометрическая схема соединений в сети, порядок соединения объектов сети, ее конфигурация.
То есть топология сети означает физическое и логическое размещение сетевых компонентов.
Существуют следующие топологии компьютерных сетей:
- шинная топология;
- кольцевая топология (петля);
- топология «звезда» (радиальная, звездообразная);
- полносвязная (ячеистая, сетка);
- иерархическая (древовидная);
- смешанная (гибридная).
На практике все сети обычно строятся на основе трех базовых топологий: шина, кольцо, звезда.
Шина. В этой топологии все компьютеры сети подключены к одному кабелю, который называется магистралью.
Рис.1 Топология шина: С — сервер; К — компьютер.
Когда передаваемые по кабелю сигналы достигают его концов, они отражаются от них. Возникает наложение сигналов, находящихся в разных фазах, что приводит к их искажению. Поэтому сигналы, которые достигают концов кабеля, необходимо погасить. Для этой цели на концах кабеля устанавливают терминаторы.
В сети с топологией шина данные в виде электрических сигналов передаются всем компьютерам сети, но принимает их только тот компьютер, адрес которого совпадает с адресом получателя. Адрес получателя передается вместе с данными. В каждый момент времени передачу может вести только один компьютер, поэтому производительность такой сети зависит от количества компьютеров в ней. Чем больше компьютеров в сети, тем она медленнее.
Шина – это пассивная топология, т.е. компьютеры только слушают передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому выход одного или нескольких компьютеров из строя в такой сети никак не сказывается на работе сети.
Кольцо. В сетях с топологией «кольцо» компьютеры связаны один с другим, при этом первый компьютер связан с последним. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер.
Рисунок 2 — Топология кольцо
Каждый компьютер распознает и получает тольку ту информацию, которая ему адресована.
В отличие от пассивной технологии «шина», в сетях с топологией «кольцо» каждый компьютер выступает в роли повторителя (репитера), т.е. компьютеры не только слушают, но и передают данные в сети от отправителя к получателю. Здесь каждый компьютер усиливает данные и передает их следующему компьютеру, пока эти данные не окажутся в том компьютере, чей адрес совпадает с адресом получателя. Получив данные, принимающий компьютер посылает передающему сообщение, в котором подтверждает факт приема. Выход из строя хотя бы одного компьютера приводит к неработоспособности сети.
Звезда. Топология «звезда» отличается тем, что все компьютеры подключаются к одному центральному (серверу). Для этого в центре сети содержится узел коммутации (коммутирующее устройство), к которому отдельным кабелем подключаются все компьютеры сети. Такой узел называется концентратором (hub).
Сигналы от передающего компьютера поступают через концентратор ко всем другим компьютерам.
Концентраторы делятся на активные и пассивные. Активные концентраторы передают сигналы так же, как репитеры (повторители), поэтому их называют многопортовыми повторителями. Обычно они имеют от 8 до 12 портов для подключения компьютеров. Активные концентраторы питаются от электрической сети.
К пассивным концентраторам относятся монтажные или коммутирующие панели, которые просто пропускают через себя сигнал, не усиливая и не восстанавливая его. Пассивным концентраторам не требуется питание от электрической сети.
Основное преимущество топологии «звезда» – высокая надежность. Выход из строя одного или нескольких компьютеров не приводит к потере работоспособности остальной части сети. Обрыв кабеля в одном месте приводит к отключению от сети только одного компьютера. Только неисправность концентратора приводит к полной потере работоспособности сети. Недостатком этой топологии является необходимость в дополнительном расходе кабеля и установке концентратора.
Кроме базовых топологий используют также другие схемы соединений компьютеров в сети, например ячеистую топологию, иерархическое соединение, а также комбинации базовых топологий, например звезда-шина или звезда-кольцо.
Ячеистая топология. В некоторых случаях используется ячеистая топология. В данной топологии каждый компьютер соединен с каждым другим компьютером отдельным кабелем.
Сеть с ячеистой топологией обладает высокой избыточностью и надежностью. Данные от одного компьютера к другому могут передаваться по разным маршрутам, поэтому разрыв кабеля не отражается на работоспособности сети. Главный недостаток сетей с ячеистой топологией – большой расход кабеля.
Главная страница >>