Как создать и выбрать базы данных mysql
Содержание:
- Определение сущностей
- Как хранится информация в БД
- Главное о базах данных
- Достоинства документных баз
- Ключи
- Создание связей между сущностями
- Виды баз данных
- Как создать базу данных MySQL?
- Создание и обновление структур данных на основе метаданных
- 2.4. Системы управления базами данных и экспертные системы
- Типы движков баз данных MySQL
- PostgreSQL
Определение сущностей
На этом этапе вам необходимо определить сущности, из которых будет состоять база данных.
Сущность — это объект в базе данных, в котором хранятся данные. Сущность может представлять собой нечто вещественное (дом, человек, предмет, место) или абстрактное (банковская операция, отдел компании, маршрут автобуса). В физической модели сущность называется таблицей.
Сущности состоят из атрибутов (столбцов таблицы) и записей (строк в таблице).
Обычно базы данных состоят из нескольких основных сущностей, связанных с большим количеством подчиненных сущностей. Основные сущности называются независимыми: они не зависят ни от какой-либо другой сущности. Подчиненные сущности называются зависимыми: для того чтобы существовала одна из них, должна существовать связанная с ней основная таблица.
На диаграммах сущности обычно представляются в виде прямоугольников. Имя сущности указывается внутри прямоугольника:
Любая таблица имеет следующие характеристики:
- в ней нет одинаковых строк;
- все столбцы (атрибуты) в таблице должны иметь разные имена;
- элементы в пределах одной колонки имеют одинаковый тип (строка, число, дата);
- порядок следования строк в таблице может быть произвольным.
На этом этапе вам необходимо выявить все категории информации (сущности), которые будут храниться в базе данных.
Как хранится информация в БД
В основе всей структуры хранения лежат три понятия:
- База данных;
- Таблица;
- Запись.
База данных
База данных — это высокоуровневное понятие, которое означает объединение совокупности данных, хранимых для выполнения одной цели. Если мы делаем современный сайт, то все его данные будут храниться внутри одной базы данных. Для сайта онлайн-дневника наблюдений за погодой тоже понадобится создать отдельную базу данных.
Таблица
По отношению к базе данных таблица является вложенным объеком. То есть одна БД может содержать в себе множество таблиц. Аналогией из реального мира может быть шкаф (база данных) внутри которого лежит множество коробок (таблиц). Таблицы нужны для хранения данных одного типа, например, списка городов, пользователей сайта, или библиотечного каталога. Таблицу можно представить как обычный лист в Excel-таблице, то есть совокупность строк и столбцов. Наверняка каждый хоть раз имел дело с электронными таблицами (MS Excel). Заполняя такую таблицу, пользователь определяет столбцы, у каждого из которых есть заголовок. В строках хранится информация. В БД точно также: создавая новую таблицу, необходимо описать, из каких столбцов она состоит, и дать им имена.
Запись
Запись — это строка электронной таблицы. Это неделимая сущность, которая хранится в таблице. Когда мы сохраняем данные веб-формы с сайта, то на самом деле добавляем новую запись в какую-то из таблиц базы данных. Запись состоит из полей (столбцов) и их значений. Но значения не могут быть какими угодно. Определяя столбец, программист должен указать тип данных, который будет храниться в этом столбце: текстовый, числовой, логический, файловый и т.д. Это нужно для того, чтобы в будущем в базу не были записаны данные неверного типа.
Соберем всё вместе, чтобы понять, как будет выглядеть ведение дневника погоды при участии базы данных.
- Создадим для сайта новую БД и дадим ей название «weather_diary».
- Создадим в БД новую таблицу с именем «weather_log» и определим там следующие столбцы:
- Город (тип: текст);
- День (тип: дата);
- Температура (тип: число);
- Облачность (тип: число; от 0 (нет облачности) до 4 (полная облачность));
- Были ли осадки (тип: истина или ложь);
- Комментарий (тип: текст).
- При сохранении формы будем добавлять в таблицу weather_log новую запись, и заполнять в ней все поля информацией из полей формы.
Теперь можно быть уверенными, что наблюдения наших пользователей не пропадут, и к ним всегда можно будет получить доступ.
Реляционная база данных
Английское слово „relation“ можно перевести как связь, отношение. А определение «реляционные базы данных» означает, что таблицы в этой БД могут вступать в отношения и находиться в связи между собой. Что это за связи? Например, одна таблица может ссылаться на другую таблицу. Это часто требуется, чтобы сократить объём и избежать дублирования информации. В сценарии с дневником погоды пользователь вводит название своего города. Это название сохраняется вместе с погодными данными. Но можно поступить иначе:
- Создать новую таблицу с именем „cities“.
- Все города в России известны, поэтому их все можно добавить в одну таблицу.
- Переделать форму, изменив поле ввода города с текстового на поле типа «select», чтобы пользователь не вписывал город, а выбирал его из списка.
- При сохранении погодной записи, в поле для города поставить ссылку на соответствующую запись из таблицы городов.
Так мы решим сразу две задачи:
- Сократим объём хранимой информации, так как погодные записи больше не будут содержать название города;
- Избежим дублирования: все пользователи будут выбирать один из заранее определённых городов, что исключит опечатки.
Связи между таблицами в БД бывают разных видов. В примере выше использовалась связь типа «один-ко-многим», так как одному городу может соответствовать множество погодных записей, но не наоборот! Бывают связи и других типов: «один-к-одному» и «многие-ко-многим», но они используются значительно реже.
Это интересно: Трудовая книжка
Главное о базах данных
- Чаще всего базы данных напоминают таблицы: в них одному параметру соответствует один набор данных. Например, один клиент — одно имя, один телефон, один адрес.
- Такие «табличные» базы данных называются реляционными.
- Чтобы строить сложные связи, разные таблицы в реляционных базах можно связывать между собой: ставить ссылки.
- Реляционная база — не единственный способ хранения данных. Есть ситуации, когда нам нужна большая гибкость в хранении.
- Бывают сетевые базы данных: когда нужно хранить много связей между множеством объектов. Например, каталог фильмов: в одном фильме может участвовать много человек, а каждый из них может участвовать во множестве фильмов.
- Бывают иерархические базы, или «деревья». Пример — наша файловая система.
- Какую выбрать базу — зависит от задачи. Одна база не лучше другой, но они могут быть более или менее подходящими для определённых задач.
Текст и иллюстрации
Миша Полянин
Редактор
Максим Ильяхов
Корректор
Ира Михеева
Иллюстратор
Даня Берковский
Вёрстка
Маша Дронова
Доставка
Олег Вешкурцев
Что-то делает руками
Паша Федоров
Во славу
Практикума
Достоинства документных баз
- Позволяют хранить объекты с разной структурой.
- Могут отображать почти все структуры данных, включая объекты на основе ООП, списки и словари, используя старый добрый JSON.
- Несмотря на то, что NoSQL не схематичны по своей природе, они часто поддерживают проверку схемы. Это значит, что вы можете сделать коллекцию со схемой. Эта схема не будет простой, как таблица: это будет JSON схема со специфическими полями.
- Запросы к NoSQL очень быстрые — каждая запись независима и, следовательно, время запроса не зависит от размера базы. По той же причине эта БД поддерживает параллельность.
- В NoSQL масштабирование БД осуществляется добавлением компьютеров и распределением данных между ними, этот метод называется горизонтальное масштабирование. Оно позволяет автоматически добавлять ресурсы к БД, когда нам нужно, не провоцируя простои.
Ключи
Ключом (key) называется набор атрибутов, однозначно определяющий запись. Ключи делятся на два класса: простые и составные.
Простой ключ состоит только из одного атрибута. Например, в базе «Паспорта граждан страны» номер паспорта будет простым ключом: ведь не бывает двух паспортов с одинаковым номером.
Составной ключ состоит из нескольких атрибутов. В той же базе «Паспорта граждан страны» может быть составной ключ со следующими атрибутами:
фамилия, имя, отчество, дата рождения. Это — как пример, т. к. этот составной ключ, теоретически, не обеспечивает гарантированной уникальности записи.
Также существует несколько типов ключей, о которых рассказано далее.
Возможный ключ
Возможный ключ представляет собой любой набор атрибутов, однозначно идентифицирующих запись в таблице. Возможный ключ может быть простым или составным.
Каждая сущность должна иметь, по крайней мере, один возможный ключ, хотя таких ключей может быть и несколько. Ни один из атрибутов первичного ключа не может принимать неопределенное (NULL) значение.
Возможный ключ называется также суррогатным.
Первичные ключи
Первичным ключом называется совокупность атрибутов, однозначно идентифицирующих запись в таблице (сущности). Один из возможных ключей становится первичным ключом. На диаграммах первичные ключи часто изображаются выше основного списка атрибутов или выделяются специальными символами. Сущность на рисунке имеет как ключевые, так и обычные атрибуты.
Альтернативные ключи
Любой возможный ключ, не являющийся первичным, называется альтернативным ключом. Сущность может иметь несколько альтернативных ключей.
Внешние ключи
Внешним ключом называется совокупность атрибутов, ссылающихся на первичный или альтернативный ключ другой сущности. Если внешний ключ не связан с первичной сущностью, то он может содержать только неопределенные значения. Если при этом ключ является составным, то все атрибуты внешнего ключа должны быть неопределенными.
На диаграммах атрибуты, объединяемые во внешние ключи, обозначаются специальными символами. На рисунке изображены две связанные сущности (Дома и их Хозяева) и образованные ими внешние ключи (ведь один человек может владеть больше, чем одним домом).
Ключи являются логическими конструкциями, а не физическими объектами. В реляционных базах данных предусмотрены механизмы, обеспечивающие сохранение ключей.
Создание связей между сущностями
Теперь, когда данные преобразованы в таблицы, нужно проанализировать связи между ними. Сложность базы данных определяется количеством элементов, взаимодействующих между двумя связанными таблицами. Определение сложности помогает убедиться, что вы разделили данные на таблицы наиболее эффективно.
Каждый объект может быть взаимосвязан с другим с помощью одного из трех типов связи:
Связь «один-к одному»
Когда существует только один экземпляр объекта A для каждого экземпляра объекта B, говорят, что между ними существует связь «один-к одному» (часто обозначается 1:1). Можно указать этот тип связи в ER-диаграмме линией с тире на каждом конце:
Если при проектировании и разработке баз данных у вас нет оснований разделять эти данные, связь 1:1 обычно указывает на то, что в лучше объединить эти таблицы в одну.
Но при определенных обстоятельствах целесообразнее создавать таблицы со связями 1:1. Если есть поле с необязательными данными, например «описание», которое не заполнено для многих записей, можно переместить все описания в отдельную таблицу, исключая пустые поля и улучшая производительность базы данных.
Чтобы гарантировать, что данные соотносятся правильно, в нужно будет включить, по крайней мере, один идентичный столбец в каждой таблице. Скорее всего, это будет первичный ключ.
Связь «один-ко-многим»
Эта связи возникают, когда запись в одной таблице связана с несколькими записями в другой. Например, один клиент мог разместить много заказов, или у читателя может быть сразу несколько книг, взятых в библиотеке. Связи «один- ко-многим» (1:M) обозначаются так называемой «меткой ноги вороны», как в этом примере:
Чтобы реализовать связь 1:M, добавьте первичный ключ из «одной» таблицы в качестве атрибута в другую таблицу. Если первичный ключ таким образом указан в другой таблице, он называется внешним ключом. Таблица со стороны связи «1» представляет собой родительскую таблицу для дочерней таблицы на другой стороне.
Связь «многие-ко-многим»
Когда несколько объектов таблицы могут быть связаны с несколькими объектами другой. Говорят, что они имеют связь «многие-ко-многим» (M:N). Например, в случае студентов и курсов, поскольку студент может посещать много курсов, и каждый курс могут посещать много студентов.
На ER-диаграмме эти связи отображаются с помощью следующих строк:
При проектировании структуры базы данных реализовать такого рода связи невозможно. Вместо этого нужно разбить их на две связи «один-ко-многим».
Для этого нужно создать между этими двумя таблицами новую сущность. Если между продажами и продуктами существует связь M:N, можно назвать этот новый объект «sold_products», так как он будет содержать данные для каждой продажи. И таблица продаж, и таблица товаров будут иметь связь 1:M с sold_products. Этот вид промежуточного объекта в различных моделях называется таблицей ссылок, ассоциативным объектом или таблицей связей.
Каждая запись в таблице связей будет соответствовать двум сущностям из соседних таблиц. Например, таблица связей между студентами и курсами может выглядеть следующим образом:
Обязательно или нет?
Другим способом анализа связей является рассмотрение того, какая сторона связи должна существовать, чтобы существовала другая. Необязательная сторона может быть отмечена кружком на линии. Например, страна должна существовать для того, чтобы иметь представителя в Организации Объединенных Наций, а не наоборот:
Два объекта могут быть взаимозависимыми (один не может существовать без другого).
Рекурсивные связи
Иногда при проектировании базы данных таблица указывает на себя саму. Например, таблица сотрудников может иметь атрибут «руководитель», который ссылается на другое лицо в этой же таблице. Это называется рекурсивными связями.
Лишние связи
Лишние связи — это те, которые выражены более одного раза
Как правило, можно удалить одну из таких связей без потери какой-либо важной информации. Например, если объект «ученики» имеет прямую связь с другим объектом, называемым «учителя», но также имеет косвенные отношения с учителями через «предметы», нужно удалить связь между «учениками» и «учителями»
Так как единственный способ, которым ученикам назначают учителей — это предметы.
Виды баз данных
- Фактографическая – содержит краткую информацию об объектах некоторой системы в строго фиксированном формате;
- Документальная – содержит документы самого разного типа: текстовые, графические, звуковые, мультимедийные;
- Распределённая – база данных, разные части которой хранятся на различных компьютерах, объединённых в сеть;
- Централизованная – база данных, хранящихся на одном компьютере;
- Реляционная – база данных с табличной организацией данных;
- Неструктурированная (NoSQL) — база данных, в которой делается попытка решить проблемы масштабируемости и доступности за счёт атомарности (англ. atomicity) и согласованности данных, но не имеющих четкой (реляционной) структуры.
Одно из основных свойств БД – независимость данных от программы, использующих эти данные. Работа с базой данных требует решения различных задач, основные из них следующие:
- создание базы;
- запись данных в базу;
- корректировка данных;
- выборка данных из базы по запросам пользователя.
Задачи этого списка называются стандартными.
Следующее понятие, связанное с базой данных: программа для работы с базой данных – это программа, которая обеспечивает решение требуемого комплекса задач. Любая подобная программа должна уметь решать все задачи стандартного набора.
База данных в разных системах имеет различную структуру.
В ПВЭМ обычно используются реляционные БД – в таких базах файл является по структуре таблицей. В ней столбцы называются полями, строки – записями.
В БД содержатся банные некоторого множества объктов. Каждая запись содержит данные одного объекта. Каждая такая БД определяется именем файла, списком полей, шириной полей. Например, БД Школа (Ученик, Класс, Адрес).
Примером БД может служить расписание движения поездов или автобусов. Здесь каждая строчка – запись отражает данные строго одного объекта. База включает поля: номер рейса, маршрута следования, время отправления и т.д.
Классическим примером БД является и телефонный справочник. Запрос к базе данных – это предписание, указывающее, какие данные пользователь желает получить из базы.
Некоторые запросы могут представлять собой серьёзную задачу, для решения которой потребляется составлять сложную программу. Например, запрос к базе – автобусному расписанию: определить разницу в среднем интервале отправления автобусов из Ростова в Таганрог и из Ростова в Шахты.
Объекты для работы с базами данных
Для создания приложения, позволяющего просматривать и редактировать базы данных, нам потребуется три звена:
- набор данных
- источник данных
- визуальные элементы управления
В нашем случае эта триада реализуется в виде:
- Table
- DataSource
- DBGrid
Table подключается непосредственно к таблице в базе данных. Для этого нужно установить псевдоним базы в свойстве DataBaseName и имя таблицы в свойстве TableName, а затем активизировать связь: свойство .
Однако, поскольку Table является невизуальным компонентом, хотя связь с базой и установлена, пользователь не в состоянии увидеть какие – либо данные. Поэтому необходимо добавить визуальные компоненты, отображающие эти данные. В нашем случае это сетка DBGrid. Сетка сама по себе «не знает», какие данные ей нужно отображать, её нужно подключить к Table, что и делается через компонент – посредник .
А зачем нужен компонент – посредник? Почему бы сразу не подключаться к Table?
Допустим, несколько визуальных компонентов – таблица, поля ввода и т.п. подключены к таблице. А нам нужно быстро переключить их все на другую подобную таблицу. С DataSource это сделать несложно — достаточно просто поменять свойство t, а вот без пришлось бы менять указатели у каждого компонента.
Приложения баз данных – нить, связывающая БД и пользователя:
БД => набор данных –=> источник данных => визуальные компоненты => пользователь
Набор данных:
- Table(таблица, навигационный доступ)
- Query(запрос, реляционный доступ)
Визуальные компоненты:
- Сетки DBGrid, DBCtrlGrid
- Навигатор DBNavigator
- Всяческие аналоги Lable, Editи т.д.
- Компоненты подстановки
Как создать базу данных MySQL?
Компании предоставляющие услуги хостинга обеспечивают своих клиентов программным обеспечением phpMyAdmin для создания баз данных MySQL. Ссылка на phpMyAdmin есть у вас в панели управления в учётной записи хостинга. Создание и настройка самой базы данных MySQL может осуществляться двумя способами в зависимости от настроек Вашего хостинг провайдера. Первый — создание учётной записи пользователя базы данных, имени и пароля базы данных осуществляется в самой панели задач вашей учётной записи на хостинге. После этого вы можете перейти в настройки базы данных MySQL и внести необходимое имя базы данных. Второй способ, который предоставляется хостингом — создание учётной записи пользователя базы данных, имени и пароля базы данных осуществляется непосредственно в phpMyAdmin.
Создаём базу данных MySQL в phpMyAdmin
Существуют разные версии phpMyAdmin, они немного отличаются друг от друга, но принцип везде один и тот же. У Вас не должно возникнуть трудностей, чтобы создать базу данных в phpMyAdmin. На картинках показан пошаговый процесс создания базы данных в phpMyAdmin версии 3.5.1. Другие версии выглядят немного по-другому. Новейшая версия 4.0.6.
И так для того, чтобы создать базу данных MySQL необходимо:
Зайдите в phpMyAdmin в панели своей учётной записи компании, предоставляющей хостинг. На картинке показан общий вид программы, где видна вся информация о системе сервера
Здесь важно отметить, что многие хостинг-компании дают возможность создать базу данных MySQL не заходя непосредственно в phpMyAdmin, а лишь необходимо указать в отдельных строчках имя базы данных, имя администратора базы данных и задать пароль.
Если же есть необходимость создать базу данных через панель phpMyAdmin,то необходимо создать учётную запись для пользователя. Для это перейдите во вкладку «Пользователи», которая отображена вверху.
Далее нажимаем на ссылку «Добавить пользователя» и вводим данные: имя пользователя, хост, пароль
Для наглядности смотрите картинку ниже в галерее картинок. Ну и жмём кнопку «Добавить пользователя», после чего система уведомит Вас, что новый пользователь добавлен.
Теперь можно создать саму базу данных. Жмём вверху на вкладку «Базы данных»
Вводим название базы данных под строкой «Создать базу данных» и жмём кнопку «Создать». осле чего система также уведомит Вас о том, что всё прошло удачно.
После того, как Вы пройдёте все вышеописанные шаги по созданию MySQL баз данных при установке того или иного программного обеспечения по созданию сайтов, нужно ввести данные пользователя MySQL и имя базы данных.
Необходимо вводить все данные на латинице.
Создание MySQL базы данных в phpMyAdmin | ||||||
|
Создание базы данных в панели управления у хостинг провайдера
Большинство компаний, предлагающих хостинг услуги, предоставляют также ту или иную систему управления сайтами, которая также создать MySQL базу данных легко и быстро. Разберём на примере панели Fastpanel, доступ которой предоставляется хостингом, а также через неё можно войти в систему phpMyAdmin:
- Необходимо войти в панель управления и на первой странице будет список запущенных сайтов;
- Необходимо пройти во вкладку «Базы данных»;
- Нажать на кнопку добавить и в открывшимся окне внести данные названия базы данных, пользователя и пароль базы данных, который в принципе можно сгенерировать. Нажать кнопку «создать», после чего база данных появится в общем списке. Теперь можно подключаться к данной базе данных и создавать на ней сайт.
Все шаги создания базы данных проиллюстрированы ниже:
Создание MySQL базы данных в FastPanel | ||||||
|
Создание и обновление структур данных на основе метаданных
В процессе создания или модификации прикладного решения разработчик избавлен от необходимости каких-либо действий по непосредственному изменению структуры полей базы данных прикладного решения.
Разработчику достаточно путем визуального конструирования описать структуру используемых объектов прикладного решения, состав их реквизитов, табличных частей, форм и пр.
Все действия по созданию или изменению структуры таблиц базы данных платформа выполнит самостоятельно, на основании состава объектов прикладного решения и их характеристик.
Например, для того, чтобы в справочнике сотрудников появилась возможность хранить сведения о составе семьи сотрудника, разработчику «1С:Предприятия 8» не нужно создавать в базе данных специальную новую таблицу, задавать правила, по которым данные, хранящиеся в этой таблице, будут связаны с данными из основной таблицы, программировать алгоритмы совместного доступа к данным этих таблиц, создавать алгоритмы проверки прав доступа к данным, находящимся в подчиненной таблице и пр.
Все, что требуется сделать разработчику — щелчком мыши добавить к справочнику табличную часть и задать два ее строковых реквизита: Имя и Родство. При сохранении или обновлении конфигурации платформа самостоятельно выполнит реорганизацию структуры базы данных, создаст необходимые таблицы и т.д.
2.4. Системы управления базами данных и экспертные системы
2.4.3.2. Установка связей между таблицами в СУБД Access
После создания структуры таблиц (Студенты, Группы студентов, Дисциплины, Успеваемость) для сущностей базы данных «Деканат» необходимо установить связи между таблицами. Связи между таблицами в БД используются при формировании запросов, разработке форм, при создании отчетов.
Для создания связей необходимо закрыть все таблицы и выбрать команду «Схема данных» из меню Сервис, появится активное диалоговое окно «Добавление таблицы» на фоне неактивного окна Схема данных.
Рис. 1.
В появившемся диалоговом окне Добавление таблиц необходимо выделить имена таблиц и нажать кнопку Добавить, при этом в окне «Схема данных» добавляются таблицы. После появления всех таблиц в окне Схема данных необходимо закрыть окно Добавление таблицы, щелкнув левой кнопкой мыши на кнопке Закрыть.
Рис. 2.
Следующий шаг — это установка связей между таблицами в окне Схема данных. Для этого в окне Схема данных необходимо отбуксировать (переместить) поле КодГруппы из таблицы Группы на соответствующее поле таблицы Студенты, в результате этой операции появится окно «Изменение связей».
В появившемся окне диалога «Изменение связей» необходимо активизировать флажки: «Обеспечить целостность данных», «каскадное обновление связанных полей» и «каскадное удаление связанных записей», убедиться в том, что установлен тип отношений один-ко-многим и нажать кнопку Создать.
Рис. 3.
В окне Схема данных появится связь один-ко-многим между таблицами Группы студентов и Студенты. Аналогичным образом надо связать поля КодСтудента в таблицах Студенты и Успеваемость, а затем поля КодДисциплины в таблицах Успеваемость и Дисциплины. В итоге получим Схему данных, представленную на рисунке.
Рис. 4.
После установки связей между таблицами, окно Схема данных необходимо закрыть.
Далее необходимо осуществить заполнение всех таблиц. Заполнение таблиц целесообразно начинать с таблицы Группы студентов, так как поле Код группы таблицы Студенты используется в качестве столбца подстановки для заполнения соответствующего поля таблицы Студенты.
2.4.3.3. Заполнение таблиц
Заполнение таблиц можно начать и с заполнения таблицы Студенты. В окне Базы данных выделяем нужную таблицу, затем выполняем щелчок на кнопке Открыть.
На экране появится структура таблицы БД в режиме таблицы. Новая таблица состоит из одной пустой строки.
Рис. 5.
Заполнение производится по записям, т.е. вводится информация для всей строки целиком. Поле счетчика заполняется автоматически. После ввода первой записи пустая запись смещается в конец таблицы. Переход к следующему полю осуществляется нажатием клавиши ТаЬ.
Для заполнения поля MEMO в таблице (колонка Место рождения) нажимаем комбинацию клавиш <Shif+F2>, предварительно установив курсор в поле MEMO. Открывается диалоговое окно Область ввода, после ввода или редактирования данных в этом окне щелкаем на кнопке ОК.
После заполнения таблица Студенты имеет следующий вид.
Рис. 6.
Аналогичным образом заполняются остальные таблицы: Группы Студентов, Успеваемость, Дисциплины.
Рис. 7.
Рис. 8.
Рис. 9.
В приложении Access применяются различные методы перемещения по таблице. Переходить от записи к записи можно с помощью: клавиш управления курсором; кнопки из области Запись, расположенной внизу таблицы в режиме таблицы; команды Правка — Перейти.. Для перемещения от поля к полю (слева направо) применяются клавиши Tab и Enter, а в обратном направлении Shift+Tab.
Поиск данных в таблице большого объема, который выполняется с помощью кнопок перехода, может занять много времени, поэтому для поиска и замены данных в полях необходимо использовать команду Правка — Найти. Откроется окно диалога. В поле Образец диалогового окна поиска указывается искомый объект и осуществляется поиск. Для замены данных в полях необходимо перейти на вкладку Замена.
После создания структуры таблиц, их заполнении и установки связей между таблицами можно приступать к построению запросов.
Далее …>>>Тема: 2.4.4. Формирование запросов
Типы движков баз данных MySQL
Каждый из примеров создания таблицы в этой статье до этого момента включал в себя определение ENGINE= . MySQL поставляется с несколькими различными движками баз данных, каждый из которых имеет свои преимущества. Используя директиву ENGINE =, можно выбрать, какой движок использовать для каждой таблицы. В настоящее время доступны следующие движки баз данных MySQL:
- InnoDB — был представлен вMySQL версии 4.0 и классифицирован как безопасная среда для транзакций.Ее механизм гарантирует, что все транзакции будут завершены на 100%. При этом частично завершенные транзакции (например, в результате отказа сервера или сбоя питания) не будут записаны. Недостатком InnoDB является отсутствие поддержки полнотекстового поиска.
- MyISAM — высокопроизводительный движок с поддержкой полнотекстового поиска. Эта производительность и функциональность обеспечивается за счет отсутствия безопасности транзакций.
- MEMORY— с точки зрения функционала эквивалентен MyISAM, за исключением того, что все данные хранятся в оперативной памяти, а не на жестком диске. Это обеспечивает высокую скорость обработки. Временный характер данных, сохраняемых в оперативной памяти, делает движок MEMORY более подходящим для временного хранения таблиц.
Движки различных типов могут сочетаться в одной базе данных. Например, некоторые таблицы могут использовать движок InnoDB, а другие — MyISAM. Если во время создания таблицы движок не указывается, то по умолчанию MySQL будет использовать MyISAM.
Чтобы указать тип движка, который будет использоваться для таблицы, о поместите соответствующее определение ENGINE= после определения столбцов таблицы:
CREATE TABLE tmp_orders { tmp_number int NOT_NULL, tmp_quantity int NOT_NULL, tmp_desc char(20) NOT_NULL, PRIMARY KEY (tmp_number) ) ENGINE=MEMORY;
Пожалуйста, опубликуйте ваши комментарии по текущей теме статьи. За комментарии, отклики, лайки, дизлайки, подписки низкий вам поклон!
PostgreSQL
PostgreSQL является еще одним выдающимся решением с открытым исходным кодом, работающим во всех основных операционных системах, включая Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64) и Windows. PostgreSQL полностью отвечает принципам ACID (атомарность, согласованность, изолированность, устойчивость).
Достоинства
- Возможность создания пользовательских типов данных и методов запросов;
- Среда разработки баз данных выполняет хранимые процедуры более чем на десятке языков программирования: Java, Perl, Python, Ruby, Tcl, C/C ++ и собственный PL/pgSQL;
- GiST (система обобщенного поиска): объединяет различные алгоритмы сортировки и поиска: B-дерево, B+-дерево, R-дерево, деревья частичных сумм и ранжированные B+ -деревья;
- Возможность создания для большего параллелизма без изменения кода Postgres, например, CitusDB.
Недостатки
- Система MVCC требует регулярной «чистки»: проблемы в средах с высокой скоростью транзакций;
- Разработка осуществляется обширным сообществом: слишком много усилий для улучшений.